\qquad Hour \qquad

due \qquad

1. Convert $22^{\circ} \mathrm{C}$ into \qquad F
2. Calculate the speed of sound outside if it was sunny and 85 F today. ($347.6 \mathrm{~m} / \mathrm{s}$)
3. A baseball fan on a warm summer day $\left(30^{\circ} \mathrm{C}\right)$ sits in the bleachers 152 m away from home plate.
a. What is the speed of sound in air at $30^{\circ} \mathrm{C}$? $(348 \mathrm{~m} / \mathrm{s})$
b. How long does it take for the fan to hear the crack of the bat? (0.44 s)
4. On a day when the temperature is $15^{\circ} \mathrm{C}$ a person stands some distance away from a cliff and claps his hands. The echo returns in 2.5 seconds. How far away is the cliff? $\approx \approx 424 \mathrm{~m}$, Hint remember to cut the distance or time in half since the sound goes there and back in that time.)
5. A clock chimes outside on a $65^{\circ} \mathrm{F}$ day. If it takes 0.57 sec before you hear it, how far away are you in MILES? (0.12 miles)
6. Why does sound travel faster in solids than in air? \qquad
7. What type of wave is sound? What causes it? Draw an example of a sound wave.
8. A race car is traveling at $32 \mathrm{~m} / \mathrm{s}$. The driver sounds its horn with a frequency of 420 Hz . If the speed of sound is $345 \mathrm{~m} / \mathrm{s}$, calculate the frequency you will hear:
a. as the race car approaches you. (463 Hz)
b. as the race car moves away from you. (384 Hz)
\qquad
\qquad
9. Your uncle tells you he flew at Mach 2. How many miles per hour was he flying if it was $8^{\circ} \mathrm{C}$ out? ($\approx 1500 \mathrm{mph}$)
10. You drop a stone into a well that is 122.5 m deep. How many sec after you let it go will it take for you to hear it hit the bottom of the well if the temp is $21.7^{\circ} \mathrm{F}$? $(\approx 5.38 \mathrm{sec}$. Hint-you need to find the time it takes the stone to fall with a l-D motion equation and then add that to the time it takes for the sound to come back up)
time for the rock to fall $\quad+\quad$ time for the sound to travel back up

$$
\Delta y=v_{i} \Delta t+1 / 2 a \Delta t^{2} \quad v=\Delta x / \Delta t
$$

11. A Hertz is the same as what other unit? \qquad
12. What does supersonic mean? \qquad
13. List 1 item that is supersonic. \qquad
14. When the frequency of a force applied matches the natural frequency of the object creating maximum energy transfer, it is known as \qquad
15. Sounds with frequencies from 20-20,000 Hertz are known as this \qquad
16. Sounds with frequencies less than 20,000 Hertz are known as this \qquad
17. Sounds with frequencies more than 20,000 Hertz are known as this \qquad
18. The unit used to measure the loudness of sound is
19. The first American to break the sound barrier \qquad
20. Loud sound that occurs when an object travels faster than the speed of sound \qquad
21. What 2 things affect the speed of sound? \qquad and \qquad
22. The frequency where sound waves are most efficiently turned into physical motion is \qquad
23. A guitar string is 65 cm long and is tuned to produce a fundamental frequency of 196 Hz . (Hint-it's a string.)
a. What is the speed of the waves on the string? ($255 \mathrm{~m} / \mathrm{s}$)
b. What are the next two harmonics for the string? ($392 \mathrm{~Hz}, 588 \mathrm{~Hz}$.)
24. You swing one of the dollar store toys (open on both ends) around your head.
a. If it is 0.85 m long and it if $25^{\circ} \mathrm{C}$ in the room, what is the fundamental frequency? (203 Hz)
b. If you were able to cap the toy on 1 end, what would the fundamental frequency be? What would the next 2 harmonics be? ($\approx 101.5 \mathrm{~Hz}$ and next 2 are $304 \mathrm{~Hz}, 507 \mathrm{~Hz}$)
